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Approximation by Aliasing with Application to 
"Certaine" Stiff Differential Equations 

By Arthur David Snider and Gary Charles Fleming 

Abstract. The usual method of finding an accurate trigonometric interpolation for a 
function with dominant high frequencies requires a large number of calculations. This 
paper shows how aliasing can be used to achieve a great reduction in the computations in 
cases when the high frequencies are known beforehand. The technique is applied to stiff dif- 
ferential equations, extending the applicability of the method of Certaine to systems with 
oscillatory forcing functions. 

1. Introduction. In general, when one wishes to perform a Fourier analysis 
on a periodic function f(t) using sampled data, the estimation of the Nth Fourier 
coefficient requires at least 2N data points ([1], [2]). The present paper shows that it 
is possible to do this with a much smaller data set under special circumstances, 
namely, when f(t) is a sum of a smooth function and of a few harmonics of high, 
known frequencies. The technique involves the use of aliasing [1] to orthogonally 
project out the high coefficients with just a few computations. 

This can be used to extend the applicability of Certaine's method ([3], [4]) in 
numerically solving systems of stiff differential equations of the form 

dy/dx = My + g(y, x). 

Here x is the independent variable, y and g are vector functions, and M is a matrix 
with large eigenvalues. This latter property ("stiffness") will dictate the use of an 
extremely fine mesh, resulting in an expensive computation, unless some special 
technique is used. In [3] and [4], an integrating factor exp(Mt) is introduced to over- 
come this difficulty, and the function g is approximated by interpolating polynomials, 
yielding a stable, accurate predictor-corrector scheme at reasonable mesh lengths 
in those cases when g is known to be smooth and slowly-varying. The trigonometric 
interpolation scheme which we describe herein permits an extension of this technique 
to cases where g is oscillatory, without destroying its basic attractive feature-its 
employment of reasonably-sized mesh lengths. 

2. The Approximation. Let us suppose that f(t) has period 2ir, and that we 
wish to estimate the Fourier coefficients for the terms sin nt and cos nt for, say, n 
up to 1000, using sampled data. Normally, we would proceed as in [1]; to find a 
trigonometric sum of the form 

(1A X A -1 A 
(CAt - 2?+ Z (A, cos rt + B, sin rt) + .Icos Nt 2 r=l2 
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which approximates f(x), we fit the function at the (2N + 1) points t,: 

ti = (j/2N)27r, i = 0, 1, ., 2N. 

Since the trigonometric functions are orthogonal with respect to summation over 

t, }, the coefficients are easily shown to be 
1 2N-1 

Ar = - E f(tA) cos rti, 

I 2N- 1 

Br - E f(tM) sin rti. 

Of course, if we are to detect the components sin 1000t and cos 1000t, we must 
choose N larger than 1000, i.e., we must use more than 2000 data points. This may 
be undesirable for a number of reasons: time, storage, accumulation of round-off 
errors. Thus, it is important that in some circumstances fewer data points may be 
used. 

Suppose we know a priori that f(t) is expressible as 
p 

(2) f(t) = h(t) + Z cm cos Rmt + dm sin Rmt 
m=1 

where h(t) is a smooth function whose Fourier coefficients decrease rapidly and the 
p (known) frequencies R1 < R2 < . . . < Rp are very large; specifically, in the Fourier 
expansion of h(t), 

(3) h(t)= 2+ Za'cosrt + t'sin rt 2 r =1 
rr 

the magnitudes of ar' and br' are negligible (for our purposes) when r > L, while 
each of the frequencies Rm is greater than L. Loosely speaking, we know that our 
function has a few high-frequency components in it, at known frequencies, and 
otherwise is slowly varying. It is then our goal to efficiently estimate the coefficients 
cm and di, and the first L coefficients ar' and br'. 

The solution to this problem is accomplished through aliasing (cf. [1]). Observe 
that at each of the points t = t3, any function cos Rmt can be replaced by cos rmt 
for some rm _ N (and similarly for sin Rmt) according to the identities 

cos[(2q)N + r]tj = cos rti, 

cos[(2q + 1)N + r]ti = cos(N -r)ti, 

sin[(2q)N + r]tj = sin rti, 

sin[(2q + 1)N + r]ti = -sin(N - r)ti. 

(Intuitively, cos[(2q)N + r]t takes the same values as cos rt at the mesh points but 
oscillates faster in between.) Therefore, if we use a coarse mesh, i.e., 2N + 1 mesh 
points with N < R1, each of the harmonics with frequencies Rm will be "equivalent" 
to a harmonic with a lower frequency rm (<N), and we can use orthogonality relations 
to project out the coefficients (c,l, di). Of course, the effect of aliasing is to combine 
the coefficients in the following way: If the actual Fourier coefficients of f(t) are 
(ar, br) and the coefficients of the trigonometric interpolation sum are (Ar, Br) as 
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in Eq. (1), then we have (cf. [1]) 
soc 

Ar = a, + Z (a2mN+r + a2mN-r), 
m=1 

Br = br + Z (b2mN+r -b2mN-r) 
m=1 

So we must choose N in such a way that none of the frequencies r = 0, 1, 2, 
L - 1, L, R1, R2, * * *, Rp are combined: that is, their trigonometric functions must 
be orthogonal to each other. Clearly, we must have N > L + p, but usually N need 
not be nearly as large as R.; hence we may achieve a great saving over the usual 
procedure. 

In summary, we choose N so that all the important frequencies are equivalent to 
different frequencies, each less than N, on the (2N + 1) mesh points; then we perform 
the usual discrete Fourier analysis for this value of N; and, finally, we reidentify 
the higher frequencies in the result. 

As an illustrative example, assume that f(t) is the sum of a slowing varying function 
plus three harmonics of frequencies 177, 589, and 1000. To estimate the magnitude 
of these harmonics by the usual method would require us to use at least 2001 mesh 
points. However, observe that if we use N = 52, i.e., 105 mesh points, then 

cOs 1Oti = cos 40t3, 

sin 1000t3 = -sin 40ti, 

cos 589t, = cos 35ti, 

sin 589t, = -sin 35ti, 

cos 177t, = cos 31t3, 

sin 177t, = -sin 31ti, 

where t, = j]r/52, j = 0, 1, * , 104. Thus if we fit f(t) at the points t4 by 

+O .2 (ArC05r2 
1(t() = A, cos rtj + Br sin rti) + A52 cos 52t4, 2 r=1 2 

we can say 

AO 30 

f(t) 2 + S (Ar COS rt + Br sin rt) 2 r=1 

+ A31 cos 177t - B31 sin 177t 

+ A35 cos 589t - B35 sin 589t 

+ A40 cos lOQOt - B40 sin lOQOt, 

and the error we make here is the truncation, after 30 terms, of the Fourier series 
for the slowly varying part of f(t). 

A quite precise error analysis of the approximation can be obtained using the 
techniques in [2]. There it is shown that, because of the well-known inequality 
Iar'I I br'I < (2/r K) maxlh ( K 

I 
(t)l (obtained by integration by parts), the error esti- 

mates for the first L coefficients are given by 



468 ARTHUR DAVID SNIDER AND GARY CHARLES FLEMING 

I Ar - a,, I Br - bri < 5 max Ih(Kf)(t)I/NK, 

and quite similar reasoning shows that, for the aliased coefficients, 

Arm - aRmI, IBrm - bRmI <- 2 + -?] max Ih(K)(t)I. 

This yields (cf. [2] for details of a similar calculation) 

AO 
L 

f(t)- ?- L (Ar cos rt + Br sin rt) 
2 r= 

p 

Z (Arm cos Rmt + Brn sin Rmt) 

(4) m=l 

< + ~~~+ z:-ma 
(K - 1)L + = K max Ih((t)I 

f(x) = -sin 177t + sin 589t + cos lOOOt 
f(x) = -sin 177t + sin 589t + cos 100l t + ft, t _ ir 

+ 2iit - Flir, t > ir 

Errors in Errors in 
third third 

Ex:act decimal for decimal for Errors, Errors, 
Coefficients N = 1500 N = 52 Exact N = 1500 N = 52 

i ai bi ai bi a b i ai bi a bi a i bi 

0 13.159 - 2 _ 1 - 4.712 - 1 - 0 _ 

1 -4.000 0 2 1 1 0 -.637 -1.000 0 0 0 0 

2 -1.000 0 0 0 1 0 0 -.500 0 0 0 1 

3 -.444 0 0 0 2 0 -.071 -.333 0 0 0 1 

4 _._ 
4-.250 0 0 0 1 0 0 -.250 0 0 0 1 

5 -.160 0 0 0 1 0 -.025 -.200 0 0 1 2 

6 -.111 0 0 0 1 0 0 -.167 0 0 0 2 

7 -.082 0 0 0 1 0 -.013 -.143 0 0 0 2 

8 -.063 0 0 0 1 0 0 -.125 0 0 0 2 

9-.049 0 0 0 2 0 -.008 -.111 0 0 0 3 

10 -.040 0 0 0 1 0 0 -.100 0 0 0 1 

20 -.010 0 0 0 1 0 0 -.050 0 0 0 6 

30 -.004 0 0 0 2 0 0 -.033 0 0 0 9 

31 -.004 0 0 0 - 
- -.001 -.032 0 0 - - 

35 -.003 0 0 0 _ _ -.001 -.029 0 0 _ 

40 -.003 0 0 0 = - 0 -.025 0 0 - - 

177 .000 -1. 0 0 1 5 0 .000 1.006 0 1 1 28 

589 .000 1.0 0 0 5 0 .000 .998 0 0 1 19 

1000 1.0 0 1 0 4 1 1.000 -.001 1 1 0 14 
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when h(t) has K derivatives. The major error, generally speaking, is the neglecting 
of aL+1' and bL+1'. 

Some numerical results are presented in the table above. For the function indicated, 
we display the exact Fourier coefficients in the first columns, then the errors in the 
third decimal place resulting from computing these coefficients by the usual sampled- 
data method using N = 1500, and, finally, the errors resulting from using N = 52 
and aliasing. The approximations are quite good for both the low and high frequencies, 
the errors in the latter being comparable in magnitude to the first neglected coeffi- 
cients a31 and b31. 

Two remarks are in order before we turn to the application of this technique 
to stiff differential equations. First, the efficiency of the method hinges on the success 
in finding a (fairly) small integer N which "aliases" the given frequencies 
R1, R2, , RP down to distinct lower frequencies ri, ... , r., each greater than the 
given frequency L. This is a highly complex number-theoretic problem for which 
we have found no simple solution, but in the Appendix we present an algorithm 
based essentially on trial-and-error (dosed with some short-cuts) which yields the 
best N. Our experience indicates that great savings can usually be expected except 
for the obvious pathological situations (p too large). The number of computations 
involved is proportional to N2 (or N log N if fast Fourier transforms are used) (cf. [1]). 

Second, one may observe that if we perform the "aliased" analysis twice, with 
different values of N, the high-frequency coefficients would be combined with different 
low-frequency components and thus we could recover them by subtraction. This may 
be easier in some cases than using the "best" N, but since it is not readily adaptable 
to the application we have in mind, we leave the details to the interested reader. 

3. Application. We now indicate how the approximation procedure described 
above may be used, in some situations, to extend the method described in [3] for 
the numerical solution of certain stiff systems of differential equations. We begin 
with a brief summary of Certaine's technique, as expounded by Guderley and Hsu [4]. 

The differential equation system is written in the form 

(5) y'(x) = - Dy(x) + g(y(x); x). 

Here y and g are vector functions and D is a constant matrix, some of whose eigen- 
values are large in magnitude. (In fact, most authors use the terminology "stiff 
systems" for the case when these eigenvalues are large positive, but we shall not 
restrict ourselves at this point.) 

Using an integrating factor, (5) is recast as 

(6) Y(x.+1) = exp(- Dh)y(x.) + f exp(D(x - x.+1))g(y(x); x) dx 

where h = x - xn. (6) is the basis for a predictor-corrector scheme for computing 
yn+, the approximation to y(xn+1). The function g(y(x); x) is fitted by a polynomial 
gK(x) of order K at the points Xn Xn-.+1, x,, for the predictor, and at the points 
Xn-K+l Xn-K+2, 

''' , xn+1 for the corrector (possibly with a Newton-Raphson iteration 
for yn, in the corrector). (6) is thus replaced by an equation of the form 

(7) Yn+ = exp(- Dh)yn + exp(- Dxn+1) f exp(Dx)gK(x) dx. 
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The integral can be evaluated explicitly (cf. [3] and [4] for details) and (7) is thus 
suitable for computation. (We note in passing that if the exponential matrices are 
hard to compute, D is decomposed into D1 + D2, where exp(-D1) is computable 
(e.g., D1 is diagonal), and the term DTy is absorbed into the function g.) 

The virtues of this technique can be stated, informally, in the following way. 
When the eigenvalues of D are large (the phenomenon of "stiffness"), the usual 
integration schemes would require the mesh size h to be very small in order to expect 
any accuracy; this in turn would require many applications of the scheme to integrate 
the solution over a reasonable length interval, and the resulting accumulation of 
round-off and truncation errors might well spoil the accuracy. But by using (7) the 
only error comes from the interpolation for g, and thus this interpolation alone, 
are not D's eigenvalues, dictate the mesh size. (This is the case unless D has eigen- 
values with large negative real parts, in which case the factor exp(D(x - x,+,)), 
appearing inside the integral, must be considered together with the approximation 
for g. As we noted earlier, these cases are usually not regarded as "stiff".) If g is a 
sufficiently slowly varying function of x, a coarse mesh can be used. In fact, if g 
happens to be a polynomial of order less than K + 1, the scheme is exact; thus 
Dahlquist's A-stability criterion is met (cf. [4]). A detailed error analysis of the 
procedure is presented in [4] (however, see also [5]). 

Here, we propose to extend this technique to some cases where g is oscillatory, 
rather than slowly varying. The obvious modification is then the employment of 
a trigonometric, rather than polynomial, interpolation for g. Of course, if only a few 
low frequencies are used in the trigonometric sum, the approximation will probably 
be no better than that obtained with the polynomial fit. And if high frequencies are 
to be used, then the usual Fourier technique would require many mesh points, i.e., 
a small value for h; this is precisely what we have been trying to avoid. But if we know 
a priori the important high frequencies contributing to g, then the aliasing approxi- 
mation presented above may allow us to calculate an appropriate trigonometric 
approximation using a coarse mesh, and we are back in business. 

The salient features of this procedure are: 
(a) If gK(x) in (7) is a trigonometric sum, the integral can be evaluated explicitly, 

so the scheme is again suitable for computation. We do not present the formulae 
here; the derivation is simple but laborious. 

(b) If g happens to be a finite trigonometric sum with less than K + 1 terms, the 
formula is exact. 

(c) Most analyses of stiff systems assume that the dominant eigenvalues of D 
are positive. But notice that Certaine's method will work even if D has large imaginary 
eigenvalues (implying oscillatory solutions y(x)), as long as g(y(x); x) is smooth. 
However, if g actually does depend on y (as it certainly will if g has absorbed the 
term D2y, mentioned earlier), it will inherit y's oscillatory behavior, and thus be 
unsuitable for polynomial interpolation. In such a case the aliasing procedure may 
be quite appropriate; the "known" high frequencies in g would include, of course, 
the frequencies involved in the homogeneous solutions of (5), which can be pre- 
computed from the eigenvalues of D. 

(d) All the frequencies used in gK(x) must be integers (or at least rationals) and 
the important high frequencies must be known beforehand (since the mesh size 
must be chosen appropriately for aliasing). 

(e) The method is not self-starting. 
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(f) An error analysis can be constructed following the same pattern as in [4], 
using Eq. (4). However, it is not highly illuminating; clearly, the effectiveness of the 
scheme hinges on the analyst's ability to correctly predict which frequencies will be 
important. 

This procedure has been used by the senior author in studying the effect of certain 
hardware parameters on "gyro drift," the term used to describe a secular error in the 
performance of an inertial guidance system. The equations look roughly like a forced, 
coupled mass-spring system. The dominant frequencies in the forcing function were 
identified with certain environmental vibration rates, the rate of spin of the gyro 
wheel, and the natural frequencies of the unforced system. The data were chosen so 
that all of the frequencies were integers. Nominal starting values were used and the 
simulation was run until a steady state was achieved. The results were sufficiently 
good to aid in designing the instruments for optimal performance. 

Appendix. In applying the method described in Section 2 to a given situation, 
one is confronted with the problem of choosing a suitable value for N, where (2N + 1) 
is the number of data points. It must be chosen so that all of the desired frequencies 
are replaced by different frequencies less than N; that is, none of the important 
frequencies are combined. We state the problem precisely. 

Definition. Given positive integers L < R1 < R2 < ... < R, and the integer N 
greater than L, we define pi (i = 1, * * *, p) by thefollowing: Expressing Ri = qiN + ri 
via the division algorithm, set pi = ri when qi is even, and pi = N - ri when qi is odd. 
Then we say N separates the frequencies Ri above L if the following conditions hold: 

(i) each pi > L, 
(ii) i # j implies pi i# pi. 

The problem is then to find the smallest such N. 
We have devised an algorithm for finding N, and it is presented in the flow chart 

below. The process is basically trial-and-error, but the following considerations 
have enabled us to proceed quite efficiently. 

First of all, rather than test successive values of N, we employ the quotient q, 
of Ri divided by N. Omitting subscripts for the moment, we observe that 

p = R-qN, q even, 

p = N(q + 1)-R, q odd. 

The condition p > L becomes, in terms of the quotient q, 

N < (R- L)/q, q even, 

N> (R+L)/(q+ 1), qodd. 

However, it is easy to show that, because N > L, 

(R - L)/(q- 1) > N > (R + L)/(q + 2). 

Combining these, we can show that if the quotient of R divided by N is either the 
even number q, or the odd number q, + 1, then in order for N to separate the fre- 
quencies above L, we must have 

(R + L)/(qe + 2) < N < (R - L)/qe. 

This inequality is the basis of our search for N. We form these intervals for de- 
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creasing even numbers q,, and consider the integers located therein. When an integer 
N appears in such intervals for each frequency Ri (i = 1, * , p), then we know that 
each pi is greater than L, and we only have to test if all the p. are different. 

Of course, we start the search with the largest q, which yields a nonempty interval; 
this value is the highest even number less than (R1 - L)/L. 

The algorithm presented in the flow chart is based on these considerations. 
Abbreviations 

lei(A) = largest even integer less than A. 
Iint[A, B] } = set of integers in the interval A, B. 
lub A = greatest element in the set A. 
glb A = least element in the set A. 

Pi is computed as in the text. 

Start; i 1 

q =lei ((R1 - L) /L) 

{.intt(R + L)/(q + 2), (R1 L)-/q]}j 

14 empty' yes q1-2+q1 

no 

q1 lei ((R1 - L) /glb( n M 

MS = {int(R + L)/(qi+ 2) (R1Q. 

,=1 
(defines I 

yes 

_s - ._yee 

C pa 1 d no 

, yes_/ye 
I~muePP,**S u lP if r n sase 
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